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4. Edge detection operators; the Laplacian and its zero-crossings.
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e Edges demarcate the boundaries of objects, or of material properties.
e Objects have parts, and these are typically joined with edges.

e The three-dimensional distribution of objects in a scene usually generates
occlusions of some objects by other objects, and these form occlusion edges
which reveal the geometry of the scene.

e Edges can be generated in more abstract domains than luminance. For
example, if some image property such as colour, or a textural signature,
or stereoscopic depth, suddenly changes, it forms a highly informative
“edge” in that domain.

e Velocity fields, containing information about the trajectories of objects,

can be organised and understood by the movements of edges. (The mo-
tions of objects in space generates velocity discontinuities at their edges.)

The central problem of stereoscopic 3D depth vision is the “correspon-
dence problem:” matching up corresponding regions of two images from
spatially displaced cameras. Aligning edges is a very effective way to
solve the correspondence problem. The same principle applies to measur-

ing velocities (for image frames displaced in time, rather than displaced in
space) by tracking edges to align corresponding regions and infer velocity
(ratio of object displacement to temporal interval).

Dr Chris Town

Edges vs. Boundaries

o

[N i : 5 g
Edges useful signal to indicate
occluding boundaries, shape.

...but quite often boundaries of interest are
fragmented, and we have extra “clutter” edge points.
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iit redit: K. Grauman

What edges are important?
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What causes an edge?

¢ Depth discontinuity

¢ Surface orientation
discontinuity

* Reflectance
discontinuity (i.e.,
change in surface
material properties) ——

* Illumination
discontinuity (e.g.,
shadow)

Slide credit: Christopher Rasmussen Dr Chris Town

What can cause an edge?

Depth discontinuity:
Reflectance change: object boundary
surface properties,

texture

Change in surface
orientation: shape
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Contrast and invariance
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Recall : Images as functions

* Edgeslook like steep cliffs

Dr Chris Town

Source: S. Seitz

Derivatives and edges

An edge is a place of rapid change in the image
intensity function.

intensity function

image (along horizontal scanline) first derivative

\

edges correspond to
extrema of derivative
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Source: L. Lazebnik

Differentiation and Convolution

« For the 2D function f(x,y), the partial derivative is:

6f(xay) = lim f(x+8,y)—f(x,y)

X £—0 &

« For discrete data, we can approximate this using finite differences:

af(x’y) ~ f(x+1’y)_f(x’y)
Ox 1

« To implement the above as convolution, what would be the associated filter?
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Partial Derivatives of an Image

Which shows changes with respect to x?

| slidecredit: Kristen Grauman Dr Chris Town

Differentiation and convolution

¢ Recall *  We could approximate this
o o (Slare)-r @) F o )= r ()
ox &0 P Oox Ax
¢ Thisis linear and shift which is a convolution with
invariant, so can be Kernel
represented as a 1 _1]
convolution.
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Finite Difference in 2D

Definition

o (x,y) _ lim(f(>f+6,y)—

&

f (x,y)j

Oox &0

6f(ayx,y) _ Ligrg(f(x’y+ 6)—f(x,y)j

&

Discrete Approximation

o (0,y) Sy 30)= S (5,0 0)

ox Ax glm,n]
o (x,y) S 90)= S (5,00,)
oy Ax
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Convolution Kernels

[t -1

[-11]

[-11]

Finite differences

1,17 =
h[m,n]
glm,n] flm,n]
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Edges and Derivatives...
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Image Gradient

* The gradient of an image:

* The gradient points in the direction of most rapid inte */ change
5f
i =20 1-
—

* The gradient direction (orientation of edge normal) is glven by:
_ —1(9f 0 f)
* The edge strength is given by the gradient magnitude

2 2
VA= (D™ + D

iit redit: Steve Seitz

Effect of Noise

* Consider a single row or column of the image

— Plotting intensity as a function of position gives a
signal
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Where is the edge?
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Solution: Smooth First

Sigma = 50
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Look for peaks in

D(hxf)

Where is the edge?
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iit redit: Steve Seitz

Derivative Theorem of Convolution

Dhxf)=(Lh)«f

Sigma = 50
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Assorted Finite Difference Filters

o1 T 1] 1
Prewitt: M, = [-L]o1 ;oM = ol o]0
T[0! T L]-1
o]l 1 1
Sobel: M, = [Z]0[2] | M,= [0[O0[0
T[0! T2 [-1

[0]T] M-

Roberts: M, = 7]

>> My = fspecial(‘sobel’);

>> outim = imfilter (double(im), My);
>> imagesc (outim) ;

>> colormap gray;
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Filter Properties

* Smoothing
— Values positive
— Sum to 1 - constant regions same as input
— Amount of smoothing proportional to mask size
— Remove “high-frequency” components; “low-pass” filter

* Derivatives
— Opposite signs used to get high response in regions of high contrast
— Sum to 0 - no response in constant regions
— High absolute value at points of high contrast

 Filters act as templates
¢ Highest response for regions that “look the most like the filter”
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Classical Operators

Prewitt’s Operator

1 0 -1
11
( 1 0 -1
1 -1
{1 1 -] 10 -1
Differentiate
Smooth
1 1 1
{1 1 1} [1} 0 0 0
111 -1 1 -1 -1
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Classical Operators

Sobel’s Operator

- 10 -1
1 q 2.0 -2
2 2J -] 10 -1
—1 Differentiate

Smooth
T 12 1

. }—. ! 0 0 0
2 -1 -1 -2 -1
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Gaussian filter

Derivative of Gaussian Filters

y-direction

x-direction

. E -
ris Town Source: Svetlana Lazebnik Dr Chris Town
Laplacian Laplacian
0 af(x
daq O{l(j) V2 in just a 3 x 3 array is:
\V4 6%2 d{ o 1{-2]-1
s i v 7) = adrg - -~ 2
: @) : -2(12]-2
o X
Do 9f(x) 112141
[ On J oz
2 i Other kernels are also sometimes used, e.g.:
v B Vn V Jd _a va(T) - e f(l)
= L1300 2 Ol o[-1]o] [[-1]-1

n 5?2
E i=1 9z 12
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Figure 2 [llustration of edge-detection by convolution with an isotropic
Laplacian operator, and marking the zero-crossings of the result of the convo-
Tution.
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Laplacian of Gaussian (LoG)
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Where is the edge? Zero-crossings of bottom graph
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2D Edge Detection Filters

Laplacian of Gaussian

Gaussian Derivative of Gaussian
1 _u?40? o 2 4
ho(u,v) = 572" 202 ghg(u,u) V=ho(u,v) |

92 a2
Vi =Gt o
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Effect of Filtering

* Noise introduces high frequencies. To -
remove them, we want to apply a “low- o —

pass” filter. A‘

* Theideal filter shape in the frequency | .
domain would be a box. But this transfers h 1
to a spatial sinc, which has infinite spatial | B .--/-\\

support.

* A compact spatial box filter transfers to a “ N # .
frequency sinc, which creates artifacts. b
* A Gaussian has compact support in both
gg . A .

choice for a low-pass filter.

B. Leibe

domains. This makes it a convenient
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Low-Pass vs. High-Pass

Low-pass
filtered

High-pass
filtered

Original image

Image Source: S. Chenney Dr Chris Town

High Frequency Enhancement

Original High pass Filter

High Frequency High Frequency Emphasis
Emphasis +

Histogram Equalization
sto8 quatizatl Dr Chris Town

Slide credit: Michal lrani




Properties of image filters

e isotropic (circularly symmetric), or anisotropic (directional )
e self-similar (dilates of each other), or not self-similar

o separable (expressible as product of two 1D functions), or not. Convolving
with a filter kernel that is separable is the same as convolving with two
1D kernels, one in the x-direction and another in the y-direction.

o degree of conjoint uncertainty (i.e. minimal dispersion, or variance) in the
information resolved

e size of support (dimensionality of the kernel)
e preferred non-linear outputs (zero-crossings; phasor moduli; energy)

¢ theoretical foundations (e.g. Logan’s Theorem)
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glm,n]

Rectangular filter
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Rectangular filter

h[m,n]

glm,n]
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Rectangular filter

glm,n]

flm,n]
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Quiz: What Effect Does This Filter
Have?

2.0
— 0.33 ?
0 0

Source: D. Lowe Dr Chris Town

Original

Sharpening Filter

Sharpening filter
— Accentuates differences
with local average

Source: D. Lowe
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Sharpening Filter

before

Source: D. Lowe Dr Chris Town

The Laplacian V3G, (r,y) * I(x,y) and its zero-crossings. Logan’s
Theorem.

V() = (5’2 £ ) £ u) 2 — (42 + A F (o)
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The Laplacian V3G, (r,y) * I(x,y) and its zero-crossings. Logan’s
Theorem.

V2 [Gol,y) * I, v)] = Gol@.y) * V2I(z, )

Laplacian of Gaussian

V2 [Go(w,y) * I (2, y)]
Go(z,y) V2 (2,y)

[V2G,(z.y)] * I(z,y)

. 9? o? 2+ y? =207 0,00,
V3Go(z,y) = mGu(T- y) + WGU(I« y) = —ﬁe (@*+y7)/22
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Logan’s Theorem: If a signal f(x) is strictly bandlimited to one octave or less, so
that the highest frequency component it contains is no greater than twice the lowest
frequency component it contains

Fmaz < 2kmin
i.e. F(k) the Fourier Transform of f(x) obeys
F(|k| > kmar = 2kmin) =0

and
F(|k| < kpin) =0
and if it is also true that the signal f(r) contains no complex zeroes in common with
its Hilbert Transform (too complicated to explain here. but this constraint serves to
exclude families of signals which are merely amplitude-modulated versions of each
other), then the original signal f(x:) can be perfectly recovered (up to an amplitude
scale constant) merely from knowledge of the set {u;} of zero-crossings of f(x) alone:
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(1) This is a very complicated, surprising, and recent result (W F Logan, 1977).

(2) Only an existence theorem has been proven. There is so far no stable constructive
algorithm for actually making this work — i.e. no known procedure that can actually
recover f(x) in all cases, within a scale factor, from the mere knowledge of its zero-
crossings f(z) = 0; only the existence of such algorithms is proven.

(3) The “Hilbert Transform” constraint (where the Hilbert Transform of a signal
is obtained by convolving it with a hyperbola, hi(x) = 1/, or equivalently by shifting
the phase of the positive frequency components of the signal f(z) by + /2 and shifting
the phase of its negative frequency components by —m/2), serves to exclude ensem-
bles of signals such as a(x) sin(wz) where a(z) is a purely positive function a(zx) > 0.
Clearly a(z) modulates the amplitudes of such signals, but it could not change any
of their zero-crossings, which would always still occur at © =0, I, %}—T % ., and so
such signals could not be uniquely represented by their zero-crossings.
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(4) It is very difficult to see how to generalize Logan’s Theorem to two-dimensional
signals (such as images). In part this is because the zero-crossings of two-dimensional
functions are non-denumerable (uncountable): they form continuous “snakes,” rather
than a discrete and countable set of points. Also, it is not clear whether the one-octave
bandlimiting constraint should be isotropic (the same in all directions), in which case
the projection of the signal’s spectrum onto either frequency axis is really low-pass
rather than bandpass; or anisotropic, in which case the projection onto both frequency
axes may be strictly bandpass but the different directions are treated differently.

(5) Logan’s Theorem has been proposed as a significant part of a “brain theory”
by David Marr and Tomaso Poggio, for how the brain’s visual cortex processes and
interprets retinal image information. The zero-crossings of handpass-filtered retinal
images constitute edge information within the image.
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The resulting bandwidth of a V2G, (z, y) filter is about 1.3 octaves, regardless
of what value for scale parameter o is used. Note that this doesn’t guite satisfy
the first constraint of Logan’s Theorem.

As a practical matter, the V2G,(x, y)*I(z,y) approach to edge extraction
tends to be very noise-sensitive. Many spurious edge contours appear
that shouldn’t be there. This defect inspired the development of more
sophisticated non-linear edge detectors, such as Canny’s, which estimates
the local image signal-to-noise ratio (SNR) to adaptively optimise its local
bandwidth. This, however, is very computationally expensive.

Finally, strong claims were originally made that V2G, (, y)*I(z,y) edge-

detecting filters describe how human vision works. In particular, the re-
ceptive field profiles of retinal ganglion cells were said to have this form.
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Comparing Human and Machine Perception

Structure

Operations
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Contrast Sensitivity Function

Ademo of human contrast sensitivity as a function of spatial frequency. Frequency rises from left to right at a constant rate. Contrast drops from bottom to

top at aconstant rate. The bars are visible further up for middle frequencies, showing these are more salient to the human visual system.
Dr Chris Town

Contrast Sensitivity Function

Blackmore & Campbell (1969)

Maximum sensitivity

~ 6 cycles / degree of visual angle

Contrastsensitivity

0.1 1

Low Spatial frequency (cycles/degree)

: 100
High Dr Chris Town

Gradients -> edges =

Primary edge detection steps:

1. Smoothing: suppress noise

2. Edge enhancement: filter for contrast
3. Edge localization

Determine which local maxima from filter output
are actually edges vs. noise

* Threshold, Thin
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Smoothing with a Gaussian

Recall: parameter o is the “scale” / “width” / “spread” of the
Gaussian kernel, and controls the amount of smoothing.
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Effect of o on derivatives

o =1 pixel o = 3 pixels

The apparent structures differ depending on Gaussian’s
scale parameter.

Larger values: larger scale edges detected

Smaller values: finer features detected
Dr Chris Town

So, what scale to choose?

It depends what we’re looking for.

Too fine of a scale...can’t see the forest for the trees.
Too coarse of a scale...can'’t tell the maple grain from the cherry. br Chris Town

Original image

Town

Gradient magnitude image

own

Thresholding gradient with a lower threshold

Thresholding gradient with a higher threshold
: » -
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Canny edge detector

*  Filterimage with derivative of Gaussian
*  Find magnitude and orientation of gradient
*  Non-maximum suppression:
— Thin multi-pixel wide “ridges” down to single pixel
width
e Linking and thresholding (hysteresis):
— Define two thresholds: low and high

— Use the high threshold to start edge curves and the
low threshold to continue them

* MATLAB: edge(image, ‘canny’);
* >>help edge

Source: D. Lowe, L. Fei-Fei Dr Chris Town

The Canny edge detector

original image (Lena)
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The Canny edge detector

norm of the gradient
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The Canny edge detector

thresholding
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The Canny edge detector

i
%Edge
t
vift)
- -~ Threshold
t
.

Edge

How to turn
these thick
regions of the
gradient into
curves?
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Non-maximum suppression

[ ] [ ] e 0o e
p
[ ] L] [ ]
. q
Gradient
L ] ® 0 ® L ]
T
L L ] [ ] L

Check if pixel is local maximum along gradient direction,
select single max across width of the edge

— requires checking interpolated pixels p and r

Dr Chris Town
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The Canny edge detector

Problem:
pixels along
this edge
didn’t survive
the
thresholding

thinning
(non-maximum suppression)
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Hysteresis thresholding

* Check that maximum value of gradient value is
sufficiently large
— drop-outs? use hysteresis

* use a high threshold to start edge curves and a low
threshold to continue them.

Source: S. Seitz Dr Chris Town

Hysteresis thresholding

\ Il |
Bl

low threshold
(weak edges)

hysteresis threshold

high threshold

(strong edges)
Source: L. Fei-Fei Dr Chris Town

Edge detection is just the beginning...

human segmentation gradient magnitude

4
Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench,

Source: L. Lazebnik
Dr Chris Town
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